
Let A = (a0, a1, · · · , an−1) be a finite sequence of complex numbers with modulus 1 of length
n. Let

A(z) := a0 + a1z + · · ·+ an−1z
n−1

be the unimodular polynomial associated with the sequenceA and z := e2πi/n. In this talk, we give
an exact formula of the L4 norm for A over the unit circle, namely, if n is an odd positive integer,
then
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where
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Using this formula, we are able to prove that if an−` = εa` for all 1 ≤ ` < n for some fixed
complex number ε with |ε| = 1 and a0 := ε−1/2, then we have
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The main term of lower bound is the best possible and is attained by A(z) := 1 +
∑p−1
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where
(
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is the Legendre symbol and p is a prime ≡ 1 (mod 4). As a corollary, we can show

that if A(z) is a reciprocal polynomial of even degree n − 1, then ‖A‖44 ≥ 5
3
n2 + O(n3/2). Also,

our result shows that the largest asymptotic merit factor for reciprocal Littlewood polynomials of
even degree is 3/2.


