Let $A=\left(a_{0}, a_{1}, \cdots, a_{n-1}\right)$ be a finite sequence of complex numbers with modulus 1 of length n. Let

$$
A(z):=a_{0}+a_{1} z+\cdots+a_{n-1} z^{n-1}
$$

be the unimodular polynomial associated with the sequence A and $z:=e^{2 \pi i / n}$. In this talk, we give an exact formula of the L_{4} norm for A over the unit circle, namely, if n is an odd positive integer, then

$$
\begin{aligned}
&\|A\|_{4}^{4}=\frac{1}{n} \sum_{a=0}^{n-1}\left|A\left(\zeta^{a}\right)\right|^{4}-\frac{4}{n^{3}} \sum_{a=0}^{n-1}\left|A\left(\zeta^{a}\right)\right|^{2} \Re\left(A\left(\zeta^{a}\right) \overline{A_{2}\left(\zeta^{a}\right)}\right) \\
&-\frac{4}{n^{3}} \sum_{a=0}^{n-1} \Re\left(A\left(\zeta^{a}\right)^{2}{\overline{A_{1}\left(\zeta^{a}\right)}}^{2}\right)+\frac{8}{n^{3}} \sum_{a=0}^{n-1}\left|A\left(\zeta^{a}\right) A_{1}\left(\zeta^{a}\right)\right|^{2},
\end{aligned}
$$

where

$$
A_{1}(z):=\sum_{\ell=0}^{n-1} \ell a_{\ell} z^{\ell} \quad \text { and } \quad A_{2}(z):=\sum_{\ell=0}^{n-1} \ell^{2} a_{\ell} z^{\ell}
$$

Using this formula, we are able to prove that if $\overline{a_{n-\ell}}=\varepsilon a_{\ell}$ for all $1 \leq \ell<n$ for some fixed complex number ε with $|\varepsilon|=1$ and $a_{0}:=\varepsilon^{-1 / 2}$, then we have

$$
\|A\|_{4}^{4} \geq \frac{5}{3} n^{2}-2 n+\frac{4}{3} .
$$

The main term of lower bound is the best possible and is attained by $A(z):=1+\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) z^{a}$, where $(\dot{\bar{p}})$ is the Legendre symbol and p is a prime $\equiv 1(\bmod 4)$. As a corollary, we can show that if $A(z)$ is a reciprocal polynomial of even degree $n-1$, then $\|A\|_{4}^{4} \geq \frac{5}{3} n^{2}+O\left(n^{3 / 2}\right)$. Also, our result shows that the largest asymptotic merit factor for reciprocal Littlewood polynomials of even degree is $3 / 2$.

